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A method of constructing an integral representation of the solution of the equilibrium equations of Timoshenko-type theory for 
thin or shallow isotropic shells of complex geometry is proposed. The method involves the following steps: writing the equilibrium 
equations for a fundamental solution of the three-dimensional theory of elasticity--the Kelvin vector in a curvilinear system of 
coordinates, normally to the middle surface of the shell; selecting a differential operator corresponding to the given theory of 
shells from the exact equilibrium equations for the Kelvin vector and constructing an integral representation of the vector of 
displacements of elements of the shell using Green's formula for the differential operator of the given theory of shells. It is shown 
that problems of determining the parameters of the stress--strain state of a shell in differential and integral formulations are 
equivalent, with an error which is small in the context of approximations of the theory. One method of constructing integral 
equations for the displace~rnent vector of the elements of a shell of constant thickness is proposed. © 1998 Elsevier Science Ltd. 
All rights reserved. 

An iteration algorithm for solving problems in the statics of shallow shells has been proposed [1-3] to 
overcome difficulties which arise when using the boundary-element method to determine the parameters 
of the stress-strain state of shells of complex geometry. However, it is noted in [3] that a large number 
of iterations is required if the radii of curvature of the shell are small under certain boundary conditions, 
and in some cases the process may diverge. 

The method described below of obtaining an integral representation of the solution of the equations 
of equilibrium of the Timoshenko-type theory of shells does not have this drawback, is fairly universal, 
does not require the construction of a fundamental solution of the equilibrium equations, and allows 
the construction of second-order Fredholm integral equations for determining the unknown parameter 
on the contour and the middle surface of a shell of complex geometry. 

1. In three-dimensional Euclidean space R 3, we are given an isotropic thin or shallow shell of constant 
thickness 2h. The shell has a middle surface S which satisfies the necessary smoothness requirements, 
a piecewise-smooth contour of that surface F and a lateral surface Z formed as the normal m moves 
towards S along F. We assume that the surface S is parametrized in terms of the radius vector rx(x 1, x 2) 
(x 1, x z are eurvilinear Gaussian coordinates). Then the radius vector of elements of the shell can be 
represented in the form R = rx + zm(rx) = rex, where m(r~) = mx is the unit normal to the surface S 
at a point with radius vector rx, z e [h, h] is the normal coordinate. 

The three-dimensiional equilibrium equation in vector form for elements of the shell has the form 
(everywhere below Greek subscripts and superscripts take values 1, 2, Latin subscripts and superscripts 
take values 1, 2, 3 an~d summation is performed over repeated indices) 

1 [0ct,x(.~pct)+~3,x(3/-~p3)]+F= 0 ~ct.x -- 03~ ~ (1.1) 
~ x ~ ,  , 

where p i  a r e  the vector components of the stress tensor, F is the vector of mass forces and g is the 
determinant of the metric tensor. 

In a system of coordinates associated with the middle surface of the shell, the vectors of the basis as 
well as the components of the metric tensor can be represented in the form (8~ is the Kronecker delta, 
b~ are mixed components of the second metric tensor of the middle surface of the shell and o~ and 13 
vary cyclically in determining the vectors of a mutual basis) 
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R a = ( 8 ~ - ~ ) r ~ ,  R a f t R f j x m x ] / ( R  a, [Rpxmx] ) 
(1.2) 

R3=R3=mx, g~=(R a, Rp), g~=(R a, R p) 
The vector components of the stress tensor can be expressed by the generalized Hooke's law in terms 

of the displacement vector of elements of the shell u by the formulae 

pi = X(R k, o3t,xu)R i + ~ (R  i, Bt,xu)R k + tlgik~k,x u (1.3) 

where ~ and ~t are Lam6 parameters. 
In the context of an approximate thin or shallow shell of constant thickness 2h the vectors of 

the basis, the components of the metric tensor, and also its determinant can, by (1.2), be replaced 
with error zb~ compared with ~i { by the corresponding quantities for the middle surface of the 
shell. 

Using Eq. (1.1) and the usual approximations, we obtain equations for the vector of forces and vector 
of moments of the form 

~a.x ( ~f~Ta (rx)) + ~]-aX( rx ) = 0 (1.4) 

c~a. x (~/~M a (r x )) + -f~([ r a x T a (r x)] + Y(r x)) = 0 (1.5) 

The vector of forces T a and of moments M a are given by the formulae 

Ta(rx) = J" Pa(r  x, z)dz, Ma(rx)= m(rx)x j" Pa(r  x, z)zdz (1.6) 
-h  -h  

h 
X(rx) - - . -  P(+) + Pn ~-) + I F(rx, z)dz 

-h  

h 
Y(rx) = htm(rx)x(Pl +) -P~-))]+ I [m(rx)x F(rx, z)lzdz 

-h  

where P~(-*) is the given vector of forces on the upper front surface S + and on the lower front surface 
S- of the shell. 

2. For the classical Timoshenko-type theory, according to the kinematic hypothesis, the displacement 
vector can be written in the form [4] 

u(R) = w(°)(rx)+hwO)(r~), w (°) = V(rx) ,  W (I) = hyar a (2.1) 

where v(rx) is the displacement vector of elements of the middle surface of the shell and ~rx) = yar a 
is a vector which defines the rotation of fibres normal to the middle surface before deformation. 

According to the static hypothesis of this theory it follows from (1.3) that 

p33 = ( p 3 ,  R 3)  = 2L(R t, Bt,xU) + 2p(m~, a3,xU) = 0 

and the vectors P~, p3 become 

pa = Z,(RI~, ~)p.xu)R a +~t(R a, c3k,xu)R t +pgupc3p,xU ' Z, = 2Xtt (2.2) 
X+2~t 

p3 =ix[(mx, Bp,xU)RP+(Rp ' ~)3.~u)RP ] 

According to the usual assumptions about basis vectors and the first metric tensor of a thin or shallow 
shell, as well as formulae (2.1) and (2.2), the vector of forces T a and of moments M a in the classical 
Timoshenko-type theory, allowing for the expressions for shearing forces [4] can be represented in the 
form 
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T a = 2h[JL'(r p, Dls.xW(°))r a + ~t(r ~ , Dt.x w(°))r k + txa~CDl~.x w~°) ] + 

+2h~t(k" - l)[(m x, D~.xW(°))a ~ + (r a, D3.xW(°))]mx (2.3) 

2h 2 
M °: = [m x x tct ] 

3 

t a := ~.'(r 6, DiLxW(I))r a + ~t(r a, DLxw(1))r k + ga~Dl3,~w0) 

Dt'xW(m)= 2h 2h 

{ OlLx wtm), k = [5 (m = 0, I) 
= 2m+l[u(+)-(-l)'u(-)-251 w(°)], k=3 

2h m 

where k is the shear factor, n (--) = U(rx - hmx), 81m is the Kronecker delta and Pm(z/h) is a Legendre 
polynomial of order m. 

For the vector '1 "3 we have the formula 

T3=2hlxk'[(mx, bl3,~w(°))re +(rl~, l w ° ) ) r l ~ ]  (2.4) 

We will introduce the differential operator Lu, which is defined as 

Lu(r x, z)='~hBa,x(xfaTa)+~h3{[Ba,x('~Ma)xmx]+~ra[[ra xTa]Xmx]} (2.5) 

and also by formulae (2.1) and (2.3), and is an approximation of the Lam6 operator in the classical 
Timoshenko-type theory. Then for the vector constructed using the Kelvin displacement vector U(0 
(/.re is the Kelvin displacement tensor [5]) 

_IT(0)t.. A)+Zvl(l) t . -  A) Wo)(r  x, A )  -"~(i) ~'x, h "(i)~'x, 

2 k + l  h ( ~ Z 
• A ) =  k=o ,  l ".qi)~ x, 2h -h k.h) 

U(i ) = UPep 

(2.6) 

we have the relation 

LW(/) - 2 ~ a , x ( ~ T ~ ) ) +  {[~a.x(~-aM~)) × mx + x/-a[[ra × T(~)] x mx]} = 

=-%/ 'a{~[T~/~ ,3 -T((/~ ,3 + , i~(r .  - r~l)]+ 

+ 2-~{[(h[m.  × (T~i;'3 + T~/~)3 )] + ~8(rx - r . ) [ m x  × ei])× mx]}}-  

_{~h.a.x(.qC'dp~(i,,+~h3[(.a,x(.~-dp~t(i,)+~[-d[r a ×P~(i,])×mx] }, r .  ~S, '~l<h (2.7) 

Here 
{x T~i)(r x, A ) = 2 h [ Z ' ( ~ ,  r~ IT(0)x.a+tX(ra ' D .T(0)x_k. a .~ ,x , , . , ( i  ) j i  k , x , , a ( i )  l a  "I" 

+Dxa~Op.xU~O~l+ 2hg(k,_l)[(mx, "~,x'~< ,,(o).,..~;.. + 



828 V. N. Paimushin and I. N. Sidorov 
2h 2 _ 

+(r  a, D3.xU~/~))]mx, M~)(rx, A)=-~-tmxXt~.) ]  

t~/)(r~, A)=~L'(r  p, O) a a k,x~(i) ) r  + e ~  UP,x"t"(i) D~,xO(i) )r  + l a ( r ,  D .,(1). k ,,..al3r~ ~ffl) 

T~/~ )3 = T~)(r x + hm(r  x)) 

I"(]) = ~.(R k, ~k,xU(i))m + ~t(m, ~)k.xU<i))R k + ~i~3.xU(i) 

e ~ i ) _  ~ 2 h  gT(o)3 mx)rtX 2h~(kt l)[(mx ' D~,xWlO))aOt ~ + (  r0t, D3xUl°~)]mx ~. + 2g ~ (i) , 

p ~ ( i )  = 2 h  2 X_ tT0) a ms)[mx x r  a 
3 ;L+2p. ~ (i) , ] 

r~ iTtk)~ k = 0 , l  (T(/~)3(r x, A), m x ) =  X(r p, Dp,xUl/k))+(~ + 2g)(mx ' "-'3,x"(i), ,  

5(rx - rn) is the Dirac delta-function, ei is the unit vector of a Cartesian system of coordinates defining 
the direction of operation of a point force in an infinite elastic medium and applied at the point with 
radius vector A = rn + ~n~, r,~ --- r011, 1] 2) is the radius vector of a point  of the middle surface of a 
shell with Gaussian coordinates' (1] l, ~12), and ~ is the normal coordinate, taken along the normal  m n - 
m(rq);  by enclosing the subscript i in the parentheses we emphasize that the Kelvin vector U(0 
corresponds to the unit force ei in a Cartesian system of coordinates, and the equation for this vector 
can be written in a curvilinear system of coordinates. 

Suppose that the vector (2.1) is a solution of system (1.4), (1.5). Then we transform the integral 
h 

I= f dzfl [ (Lu,  W(i))-(LW(i),  u)]d~ld, x 2 _  - 
-h S 

=J/{[(~)~ • (~faT~) , ,  -~¢i)'I(°)',- (~)~,~ (~/aT(?)), w(°))]+ 
S 

, U ) a +1[( [8  a x( . f~Ma) x mx], 0 <i))- ([b~.~(x/-aM(o) x m~], w°) ) ]+  

} • - h t,-~(i), [[ra xT~ ]xmx ] ) - (w  (l), [[r~ xTc~)]Xmx])] dxldx 2 

which, according to (1.4), (1.5), (2.1) and (2.5)-(2.7), is equal to 

I = ~  ~ a t - ( X  , U (°)" (U O) ( i ) ) - -  (i), [Yxm~] )  + ( T : i ; ) 3 - T ( ~  )3, w ( 0 ) ) +  
S L 

+(w(O), ei)5(r x _ rn )+ (T~)3  +T~)3, ( I ) . _  ~ .  (1) w ) + ~ ( w  , ei)~i(r - r n ) +  

1 a + ~ (Oa.~ (r~p~(i)), w(O)) + 

1 1 
+~{( [~a ' a  (~,~(~]-~P~(~))Xmx], w(')/+([[ra xP~(/)]Xmx], w('))}}dx'dx 2 (2.9) 

to the form (n~ are the components  of the unit outward normal to the surface Z and dst is an element  
of the arc of the contour F) 

(2.8) 

/=J {cr%,L w%+ "~ ( i ))  -- ( l(i)"Ot, 
r 

+l [ (ManX ' [m x x U ( I )  . . . . .  tx z [m x xw(l)])]}dst (i) J: - L~vz(i)na,  

- I I  ~- [ (  Ta, ~a.~U[°)))-(T~), ~a.xW(°))+ 
s 
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+$tCMas a,,,[ m, xU{f,‘I>-CM;,, &Jmx xw(‘)I) 1 + 

+(Ta, mx)(~U$], ra)-(T&, m,)(iw”‘. ra)k’h’ 
(2.10) 

Using the relations 

(Ta, ~,~,‘LJ~“,‘) -(T;) tl I w(O)) - (Ta (i)? m,)(+w”‘. ra)+ 

+(Ta, m,z)(~U~~~, ‘rl)-:i[T3, $J[~)-U&))-U{$) 

#Ma.i&[mx xU#])-(MPi)i&[mx ~w(‘)])]=-(m,.Uif~)(aa,,m,,~ta) 

Ij[(~a,~(~~P~~i,).W’o’)+~(t~a,~(~P~~j~)Xm,l.w”’)] dQ!X* = 

= c[(P~[#,Z 9 w ‘“‘)+$(P~cijtt~.[m, X W”‘])]dS, - 

-~!J;;[(~~~i,,~a,,W’o’)+~(P~~i~,~a,~[m~ X W”‘])]rlx’dr* 

~(P~(i),aavrlm, X W”‘l) = 3(::h2C)(T~~~3,m,)(ra,aa,,w’l’) 

(W(‘)9[[ra ~P~q~~lX~,I~~-(~~‘~,~~)(~,,~TQ~) 
from (2.9) and (2.10) we obtain the integral representation of the displacement vector of elements 
of the shell u(rx, z) = w(O) (I;) + (.z/h)w~‘)(r,) in the form 

(U(lrq9&ei)= II(T,z(r,,,),U~~~(r,,~,I~))- 
I- 

-V& (rx,rp A),w’“‘(r,,r))+(M~(r,,r),[m, x~U$~(qr,AN)- 

-(‘lZ(i)(rx,, 
* (1) IAMm, xhw (rx,r)IW~, + 

+IIr(X(r,),U~~‘cr,,A))+([Y(r,,xrn,l,~Ul~~(r~,A~~- 
s 

-(T,(i;j3 -T&‘3,w’o’(rx))-(T$)3 +T>,<)3,w(1)(rx))+ 

+~(T3(rx),~(U$) -U&‘)-Uif,‘(r,,A))+ 

+(mc,,Ul!i(r A))@ I X’ m a.x 17 ~ta(r,))+(P~~i,(r=.A),~a,=w(o)(r~))+ 

2hh 
+--(T~(i:)3(rx,A),m )(ra i3 

3(h+21.0 
x 9 a.x w”)(r ))+ x 

+(~w”‘(r,),r,)(m,.P,q,(r~,A))}~~,r, ES, I&< h (2.11) 
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p(i~k)z is the kth moment  of the Kelvin stress vector [5] on the side surface of  the shell. 

3. For any internal point of the shell with radius vector A let the vectors w (°), w 0) satisfy vector relation 
(2.11). We will determine the error by which the vector u(r m ~) satisfies the system of equations (1.4) 
and (1.5). To do so, we introduce the operators  

L~°)v(A)-Oc~.~( a ( ~ ) ( r C t ( r ~ ) +  P~(r~)))+ a ( ~ ) ( V t + ) 3 ( v ) - V ( - ) 3 ( v ) )  (3.1) 

L~)v(A) --- 0~.~ ( a ( ~ ) ( M  ~ (r~) + P~ (r n ))) + 

+ a ~  n)([rct x(T c~(r n)+ P~- (rn))]+ h[mn x(P(+)3(v) +P(-)3(v))] 

p7 ? =~ 2h~ (T(O)3(v),m.)r a _ 2h~t(k" - 1)[(m~, Dp ~v(°))a ~ + (r ~, D~ ~v(°))]mq 
~+21~ . . . . .  

V~ = 2h 2 ~. 
- ~ -  ~.+2--~(T°)3(v),mn)[m~ x r  a] 

(T (t)3 (v),mll) = ~(r 13,D~,nv(k)(rq)) + (X + 2~t)(mn,D3, nv(k)(r~)) 

v(k)(rT1)=2k+l~h 2h P,( )v(A)d~, k=O,1 
p3 (v) = ~.(r k, 0k,nv)m n + ~(m,i, Ok,nv)r k + p33,,iv 

p(+)3 = p3(r h +hmn) 

The Kelvin vectors, their moments and derivatives satisfy the equations 

L(~°)Ul°~(rx,A)=loci)(rx,r~), L~°)Ull~(rx,A) =/~)Ul°~(r~,A) = 0  

L~)U°) ' r  A" I ?(k) | I (m)( t .  A '~- -  (i)~ x, )=  l(i)(rx,rrl ), "-'q "(i) ~x,V , ' ~ j - 0  

L~t)P~iT)X(rx,r,A) =/~)U~t,  ' =/~)T~/~ '3 =0,  m,k =0,1 

L~°)P~-(i) (r  x , A) = ~,2h, t,r(o)3 ... ,..ct _ 2k/~t(k' - 1)(m x, D~,xlo(i)(r x , r n ))a~X~mx 

L ~ ) r ~ . ) ( r , , A )  = 0 

L~°)P~t(i ) (r x, A) = -2X(mx ,Io(i)(r x,% ))[m x x r a ] 

(l) c~ 2h2 ~" tT (1)3 m x r  ~] 
L~ P~ti)(rx,A)= 3 X+2~t" ~0)' x)[mx 

(T (~)3 - - "  ~(rl~,Dl~xl~(i)(r~,%)), k 0,1 8(0 'rex ) = , = 

lOti) (r x ,rn ) = - a(~-~n)5(r x - rn )e i 

II(i) (Ix, rTI ) = a ( ~ ' ~  )~(rx - rq )[mvl x e i ]h 

From these equations and formulae (2.4) and (3.1), applying operators L(~)u(A) to the right- and 
left-hand sides of  relation (2.11), we obtain the system of vector equations 

/3~, n ( a ( ~ n ) T  ~ (r n )) + a ( ~ )  (X(r~) + 21abbOT ~ (r n)r ~ ) = 0 
(3.2) 

a~z,n ( a(4~n)M~ (rn)) + a ~ )  ([r~ x T c~ (r n)] + Y(r n)) = 0 

It follows from (3.2) that the vector u(r~, ~) satisfies Eq. (1.4) with an error 24(a ( r ,0 )#b~( r ,  ~, ~). 
In the approximations of  a thin or shallow shell, these terms in the equilibrium equations can be 
neglected. 
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Using integral representation (2.11) for internal points of the shell, we can calculate the vectors of 
forces and moments  from the formulae 

T = (r~) =/~u(r~.~),  M ~ (r~) = l~u(r~ , ~ )  

h 

F ~ J{i~ + 2h~(k'- 1)[(m~,~.~)a~ + (r ~, ~3.~)1m~ }~ 

h 

.-h 

/11 = ~.'(r I~ '~l~.n )r~ + I~(r~ ,~t,~) rk + ~ l ~ . n  

l~(U)ltt(r~, ~)= e i {~ {(Tn~ (rx,r),l~fu)u~i ¢J) ( rx , r ,A) ) -  

T(~I) T. (0) X × 1 I T ( M ) u ( I ) t  r ,A~n - -(I~ T~(i)(rx.r,A),w (rx .r))+(Mn(rx.r) ,[m x ~ n i ~ x,r ~J, 

T(U) X [mx × l w 0 ) ( r x  r)])}ds, -(l~ M~0)(r~,r, A ) , , + 

[ IT(M)II(I)t=. A3X +~{(X(rx) '  lr(M)ul°))(rx'A))+([Y(rx)×mx], ] ' ~  " ~ o ) , ' x , ' - , , -  
$ 

- ( / r fu )  (T:/I)3 - T((~)3 ), w(°)(rx )) - (/r(M) (T:~)3 + T((/~)3 ), wft)(rx ))~- 

+ 1 {T3{ r ~ IT(M)I{U(+ ) _UI~)) TfM) (I) . . x., n 2 ~'~(i) -- I n U(i )(r~, A))+ 

T(M) (!) r 2h a 
+(mx,/~ U(i)( x ,A) ) (~ ,xm x, 3 t (rx))+ 

r(M) (~',, (0) 2hZ r~r(u)T(1)3t. A) ,mx) ( r~ ,~xwO)( r~ ) )+  
+(In P~fi)(rx,A),~=,xw (rx))+3(~.+2l.t)~'n -(i) ~'x, 

T(M) +( w0)(r . ) , r=)(mx,ln P~(i)(rx,A))}dS,}, r n ~S,  I~l<h 

4. On the basis of integral representation (2.11), a boundary integral equation can be 
constructed for the unknown vectors both on the contour and on the middle surface of the shell. To 
construct this equation, we need to use the limit properties of the fight-hand side of Eq. (2.11) on the 
side ~. 

We transform the sum of the integrals in (2.11) 

"~ W(1) (rx u )])]dst Jr 1(i) (A) = ~,[-(T~o)(rx,r, A), w(°) (rx,r))_ (M.(i)(rx,r, A) , x  [m x × , 

+~ J t-(T:i~ )3 - T((/~ )3, w(°) (rx)) - (T:/~)3 + T:/~ )3 , wf') (rx))]dSr~ 
S 

using (2.1) to the fo:rrn 

I(i)(A) = -  II (P~(i)fR, A ) ,u f rx ,Z ) -u f r~ ,~ ) )  a S -  II (P.(i)fR, A) ,u(rn ,~))as  (4.1) 
(s+ US-U:~) (s+US-UX) 

where Pn(0 is the Ke, lvin stress vector on the shell surface. 
Suppose that the vector U(rx, z) on this surface satisfies the H61der condition. Then  the first 

integral of the right..hand side of (4.1) does not  experience a discontinuity on crossing the point with 
radius vector A t, = r~ + ~Pmn(r~) on the side ]~, and the integral I(0 possesses the following limit 
properties [5] 

t~)(Ap) = 1~,)(Ap)+ ½(u(r~,~P),e,) 
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where I~/~(A,) are limit values of the integral lti~ at the point with radius vector Ap = rg + ~Pmn(r~) 
from ins~cte (the plus exponent) and outside (the' minus exponent) the shell, respectively; ~r~/)(At, ) is the 
direct (singular) value of this integral on L It can be shown that the other integrals on the right-hand 
side of (2.11) do not suffer a discontinuity on crossing x. 

The integral equations for w (°) and w (1~ can be picked out from (2.11) by using the expansion of this 
relation in terms of Legendre polynomials Pk(~h) (k = 0.1) and the limit properties of the integral 1(0 
on the surface L 

The integral equations for w (°) and w 0) thus constructed are the basis for constructing a boundary- 
element method for determining the parameters of the stress-strain state of the shell. By subdividing 
the middle surface and contour of the shell into isoparametric [5] boundary elements with cubic 
interpolation of the geometric and mechanical variables, we can reduce the integral equations for w (°) 
and w 0) to an algebraic system of equations. The nodal vectors of displacements both on the contour 
of the shell will be the unknowns of this system. Once the nodal unknowns have been determined, the 
forces and moments at internal points of the shell can be determined using the above formulae. 
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